

Self-supporting flexible shaft, with ball bearings on both sides

Flanged shaft coupling

Cylindrical shaft coupling

Features at a glance

Flexible shafts type **FAP-M** are innovative and easy to install. The ball bearings integrated on both sides lead to an extended service life. The mounting flange above the protective cover enables easy and precise transmission of rotational movements between two elements that are not perfectly aligned. Excellent compensation of misalignments and damping of vibrations and shocks.

- High performance and rotation speed.
- Smooth rotation through ball bearings on both sides.
- High wear resistance.
- Suitable for manual and motorised drives.
- Terminal couplings made of solid stainless steel (AISI 303).
- Reinforced protective cover made of steel.

Universally applicable, ideal for new designs and upgrades, for power transmission with motors and gear motors.

Available terminal couplings: **C** = cylindrical shaft coupling; **F** = flanged shaft coupling.

Dimensions and efficiency table

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • Germany Phone: 07665/93465-0 • Fax: 07665/93465-22 • Email: info@willtec.de • Internet: www.willtec.de

Page 1 of 6
Measure Indicate Control Sensors Mechanics Accessory

Flexible shafts **FAP-M**

Datasheet

Version	Flexible shaft	Protective cover	Terminal	Effective length	Inner coupling	Bore depth
	ØA	ØB	ØC	D	ØE	F
FAP6M	6	14	12	16	6	12
FAP 8M	8	17	15	22	8	20
FAP 12M	12	25	17	26	10	26
FAP 15M	15	30	20	26	10	26
FAP 20M	20	35	25	35	14	32

Version	Key	Torsion	Bending radius*	Torque	Weight
	G	(°)	mm	Nm	g
FAP6M	-	80	70	3	800
FAP 8M	-	70	90	4.5	1100
FAP 12M	3	50	160	9	1600
FAP 15M	3	28	300	12	2100
FAP 20M	5	18	400	18.5	3300

The data refer to flexible shafts with a total length of 1000 mm.

* Minimal bending radius.

Terminal couplings for FAP-M made of solid stainless steel (AISI 303), available versions

Messtechnik

Flexible shaft	Protective cover	Terminal cover	Flange	Flange width	Bores radius	Bores
ØA	ØB	С	ØD	E	ØF	ØG
6	22	30	38	6	30	3,2
8	28	28	45	8	36	4,2
12	35	26	55	9	45	4,2
15	36	16	60	9	48	5,2
20	42	12,5	65	11	52	5,2

Ordering example

Type FAP06 FAP08 FAP1 FAP15 FAP20	FAP12 $5M =$ flexible shaft \emptyset 6 mm $3M =$ flexible shaft \emptyset 8 mm $2M =$ flexible shaft \emptyset 12 mm $5M =$ flexible shaft \emptyset 15 mm $0M =$ flexible shaft \emptyset 20 mm	м -	500	-	DX	-	C-F
Total In xx Rotat	length (mm) x mm (on request) tion						
DX SX	 = for operation in clockwise (right-hand) direction = for operation in counter-clockwise (left-hand) direction 	1					

Terminal couplings (indication per shaft end)

- **C** = cylindrical shaft coupling
- **F** = flanged shaft coupling

•

Other versions that cannot be generated from the order code are available on request as special versions.

Mechanical characteristics

Flexible shafts are mechanical elements subjected to torque and elastic deformation. When considering a single flexible shaft, the equal and opposite torques acting on both sides cause a relative rotation of the different sections that is proportional to the length.

tec

The relationship between applied torque **T** [**Nm**] and twist angle of the extremities ϕ [°] is obtained as a function of the following three parameters:

- Torsional rigidity k [103Nm / °],
- which depends on the section diameter and the construction characteristics
- - length of the shaft L [mm]
- - Rotation direction **r**,
- dimensionless parameter characterising the asymmetrical behaviour of the shaft

The parameter **r** is equal to **1** when the shaft is loaded according to the winding direction of the spiral. When loaded in the opposite direction, $\mathbf{r} < \mathbf{1}$, as indicated in the following table:

Flexible shaft parameters							
Ø	k[10 ³ Nm/°]	r	T _{max} [Nm]	Φ[°]*			
4	17	0.55	1.1	46.71			
5	26	0.55	1.8	69.23			
6	38	0.55	3.0	78.95			
8	67	0.55	4.5	67.16			
10	101	0.55	7.5	74.26			
12	180	0.65	9.0	50.00			
15	405	0.80	12.5	30.86			
20	1050	0.85	18.5	17.62			

* The data refer to a length of $T_{max} = 1000$ mm.

i

Direction of rotation and winding

Flexible shafts differ both in their construction and in their direction of winding A left-wound shaft (related to its outermost layer) can transmit a higher torque in clockwise direction than in counter-clockwise direction. A right-wound shaft can transmit a higher torque in counter-clockwise direction than in clockwise direction.

Outermost layer **left-wound**, for **operation in clockwise** (right-hand) **direction**. Outermost layer **right-wound**, for **operation in counter-clockwise** (left-hand) **direction**.

+

Efficiency diagrams and tables

To identify the flexible shaft most suitable for your requirements, refer to the values in the tables.

If the actual loads and efficiency cannot be clearly determined, please contact our technical department.

All tables show linear dimensions in [mm] unless otherwise specified. All forces, efficiency and loads are given in [N] or [Nm] (10 N = 1 kg or 10 N·m = 1 kg·m) unless otherwise specified.

* The data refer to flexible shafts with a total length of 1000 mm.

Flexible shafts **FAP-M**

Datasheet

The manufacturer reserves the right to make changes to the products that it deems necessary for their improvement without prior notice.