Semi-rigid shaft couplings **GR**

Datasheet

Precise power transmission of non-aligned elements

Features at a glance

Semi-rigid shaft couplings type **GR** are used to transmit precise rotary motion between two nonaligned elements. Excellent compensation of misalignments and damping of vibrations and shocks.

- Universal applicability, high reliability, maintenance-free and easy-of-use.
- Suitable for manual and motorised drives.
- Simple and quick installation, without the need for other supports.
- Terminal couplings made of solid stainless steel (AISI 303).

Available terminal couplings: **CL** = cylindrical shaft; **CF** = cylindrical hollow shaft; **CM** = cylindrical solid shaft with key; **CMB** = cylindrical solid shaft with two-piece bushings with set screws for easy assembly.

Dimensions and efficiency table

All dimensions in mm

Version	Flexible shaft	Torque	Weight					
	ØA	Nm	g					
GR-6	6	3	25					
GR-8	8	4.5	50					
GR-10	10	7.5	80					
GR-12	12	9	110					
GR-15	15	12	170					
GR-20	20	18.5	270					
* Length of the flexible shaft is fixed at 10 mm.								

Semi-rigid shaft couplings **GR**

Datasheet

Q	CL	CF	СМ	СМВ	\mathbf{Q} = cylindrical square shaft						
	1	(a).	4	A	(Communication)	B					
Legend						Ť	- C	Ţ, Ţ			
ØA	Diameter of flexible shaft				ØA		В	С			
ØB	Diameter of square shaft				6	6 5					
С	Total length				8	35					
D	Available le	ength / bor	e depth		10 8 - 8.5			40			
E	Кеу			12 10			40				
ØF	Diameter hollow-/solid shaft				15		12 - 13	45			
ØG	Outer diam	ng		20		16.5 - 17.5	45				

Terminal couplings for TR, ASR, GR made of solid stainless steel (AISI 303), available versions

	CL = cylindric	CF = cylindrical hollow shaft								
	Ø A Ø B Ø HB Ø A Ø B Ø HB Ø A Ø B HB Ø B Ø Ø B HB Ø B Ø Ø B HB Ø B Ø Ø B Ø Ø B HB Ø B Ø Ø B Ø Ø B HB Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø B Ø Ø Ø B Ø									
ØA	ØB	С	D	ØA	ØВ	С	D	E	ØF	
6	10	28	12	6	10	28	10	-	6	
8	12	38	16	8	12	38	15	-	8	
10	14	44	20	10	14	44	15	-	8	
12	16	48	22	12	16	48	16	3	10	
15	20	50	25	15	20	50	16	3	10	
20	25	57	30	20	25	57	20	5	14	

CM = cylindrical solid shaft with key					СМВ	= cylinc	lrical so	lid shaf	t, two-p	iece bus	shings	
							ØA -	ØB	ØG	ØF H8		
ØA	ØB	С	D	E	ØF	ØA	ØB	С	D	E	ØF	ØG
6	10	28	10	-	6	6	10	10	39	-	6	14
8	12	38	14	-	8	8	12	12	53	-	8	22
10	14	44	14	-	8	10	14	14	59	-	8	22
12	16	48	15	3	10	12	16	16	64	3	10	24
15	20	50	15	3	10	15	20	20	66	3	10	24
15	20	50	15	5	14*	15	20	20	76	5	14 *	32*
20	25	57	20	5	14	20	25	25	78	5	14	32

* optional

All dimensions in mm

Datasheet

Dimensions and efficiency tables

Flexibility and minimum bending radius

Flexibility and minimum bending radius are important factors especially if the shaft is exposed to severe bending during its use.

Make sure that the smallest bending radius applied to the power transmission is greater than the permissible minimum bending radius. If the bending radius falls below the permissible radius during operation, the shaft will be permanently deformed and will lose its strength and service life and may thus break prematurely.

Up to this radius, it is possible to bend the transmission during operation without damage or excessive reduction of service life.

Ø	В	MBR	AR	AM
Flexible shaft Diameter (mm)	Flexible shaft Length (mm)*	Min. bending radius (mm)	Work angle (°)	Misalignment (mm)
6	10	70	4.09	0.36
8	10	90	3.18	0.28
10	10	130	2.20	0.20
12	10	160	1.79	0.16
15	10	300	0.95	0.08
20	10	400	0.72	0.06

* for **GR** type shafts, the length of the flexible shaft is fixed at 10 mm.

* for **ASR** type shafts, there are two flexible shafts, each 10 mm long.

Datasheet

Max. torque / Angle									
Ø	В	Т	ф						
Flexible shaft Diameter (mm)	Flexible shaft Length (mm)*	Max. torque Nm	Rotation angle (°)						
6	10	3.0	0.79						
8	10	4.5	0.67						
10	10	7.5	0.74						
12	10	9.0	0.50						
15	10	12.5	0.30						
20	10	18.5	0.17						

* for **GR** type shafts, the length of the flexible shaft is fixed at 10 mm.

* for **ASR** type shafts, there are two flexible shafts, each 10 mm long.

Max. torque / Angle with opposite direction									
Ø	В	Т	ø						
Flexible shaft Diameter (mm)	Flexible shaft Length (mm)*	Max. torque Nm	Rotation angle (°)						
6	10	1.6	0.79						
8	10	2.5	0.67						
10	10	4.2	0.74						
12	10	5.8	0.50						
15	10	8.75	0.30						
20	10	12.95	0.17						

* for **GR** type shafts, the length of the flexible shaft is fixed at 10 mm.

* for **ASR** type shafts, there are two flexible shafts, each 10 mm long.

-

Direction of rotation and winding

Flexible shafts differ both in their construction and in their direction of winding A left-wound shaft (related to its outermost layer) can transmit a higher torque in clockwise direction than in counter-clockwise direction. A right-wound shaft can transmit a higher torque in counter-clockwise direction than in clockwise direction.

Outermost layer **left-wound**, for **operation in clockwise** (right-hand) **direction**. Outermost layer **right-wound**, for **operation in counter-clockwise** (left-hand) **direction**.

Datasheet

Messtechnik

Ordering example semi-rigid shaft coupling

Type GR		GR	-	12	-	500	-	DX	-	CL-CM
Diam	eter									
6	= Ø6 mm									
8	= Ø8 mm									
10	= Ø10 mm									
12	= Ø12 mm									
14	= Ø14 mm									
20	= Ø20 mm									
-										
Total	length (mm)									
In xx	x mm (on request)									
Rotat	tion									
DX	= for operation in clockwise (right-hand) direct	ction								
SX	= for operation in counter-clockwise (left-han	d) dire	ction							
Term	inal couplings (indication per shaft end)									
CL	= cylindrical shaft									
CF	= cylindrical hollow shaft									

- **CM** = cylindrical solid shaft with key
- CMB = cylindrical solid shaft with two-piece bushings
- Q = cylindrical square shaft

Other versions that cannot be generated from the order code are available on request as special versions.

The manufacturer reserves the right to make changes to the products that it deems necessary for their improvement without prior notice.