
Datasheet

General characteristics

- Magnetic sensor for contactless linear and angular reading.
- Small overall dimensions allow installation in narrow spaces.
- Resolutions up to 1 μ m programmable through serial • interface.
- Easy and fast mounting with wide alignment tolerances.
- 8-wire shielded cable as standard with low friction coefficient and oil-resistant.
- Electrical protection against inversion of power supply polarity and short circuits.
- Protection class IP67.

Pole pitch	5+5 mm							
Reference indexes	C = constant step (every 5 mm) ¹⁾ E = external Z = positioned on magnetic scale							
Resolution (µm)	250	100	50	25		10	5	1
Accuracy (µm) ²⁾	±50 μm	I			±30	μm		
Max. traversing speed ³⁾	1.2 m/s (resolution 1 μm) 30 m/s (resolution 25 μm)							
Max. frequency	300 kHz (up to 500 kHz on request)							
Repeatability	±1 increment							
A, B and I_0 output signals	Line Driver / Push-Pull							
Vibration resistance (EN 60068-2-6)	300 m/s ² [55 2,000 Hz]							
Shock resistance (EN 60068-2-27)	1.000 m	1.000 m/s ² (11 ms)						
Protection class (EN 60529)	IP67							
Operating temperature	0 °C !	0 °C 50 °C						
Storage temperature	-20 °C .	80 °C						
Relative humidity	100%							
Power supply	5 28 \	VDC ±5%						
Current consumption without load	60 mA _M	AX						
Current consumption with load	140 mA _{MAX} (with 5 V and R = 120 Ω) 90 mA _{MAX} (with 28 V and R = 1.2 k Ω)							
Electrical connections	see related table							
Electrical protections	inversio	n of polari	ty and sh	ort ci	rcuits	5		
Weight	40 g							

¹⁾ With 100 μ m resolution, the constant step is 10 mm.

- ²⁾ To obtain the declared accuracy values, it is necessary to respect the alignment tolerances prescribed by the Manufacturer. Better accuracy can be obtained by reducing the gap between the sensor and the magnetic scale.
- ³⁾ The indicated speeds are referred to a maximum frequency of 300 kHz.

Willtec Messtechnik GmbH & Co. KG, Eschenweg 4, 79232 March-Hugstetten, Phone: 07665/93465-0 Fax: 07665/93465-22

info@willtec.de www.willtec.de

Technical characteristics

illtec esstechnik

Datasheet

Mechanical characteristics

- Magnetic sensor with die-cast body.
- Possibility to fix the magnetic sensor with M4 screws or with through M3 screws.
- Wide alignment tolerances.

Electrical characteristics

- Very flexible power cable.
- Reading through positioning sensor based on magneto resistance, with AMR effect (Magnetic Anisotropy).
- High signal stability.
- Electrical protection against inversion of power supply polarity and short circuits on output port.
- For applications where the maximum speed exceeds 1 m/s, it is necessary to use a PUR cable suitable for continuous movements.

Wiring and pin assignment (assignment according to DIN 47100)

8-wire connecting cable

Incremental magnetic sensor IMS5 is supplied with an 8-wire shielded cable, $\emptyset = 6.1$ mm, PVC external sheath, with low friction coefficient and oil-resistant.

Conductors section:

- power supply: 0.35 mm²
- signals: 0.14 mm²

PUR cable or cable with reduced section are available on request.

PUR cable is suitable for continuous movements. The cable's bending radius should not be lower than 60 mm.

Pin diagram **connector M12 plug**, 8-pin, A-coded, view plug side, connected to the connecting cable of the magnetic sensor.

Line Driver	Push-Pull	PIN	Conductor colour
I ₀	Io	1	brown
10	NC	2	yellow
В	В	3	white
B	NC	4	light-blue
Ā	NC	5	orange
А	А	6	green
0V	0V	7	blue
+V	+V	8	red
SCH	SCH		Shield

NC = not connected

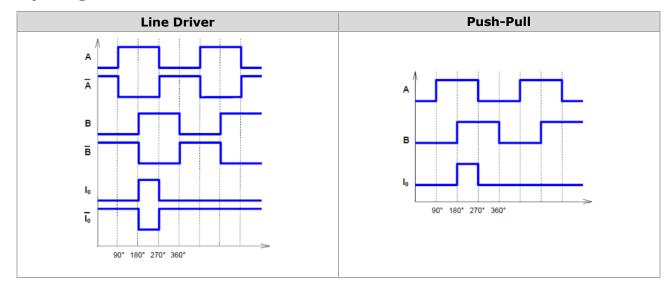
Datasheet

8-wire extension cable

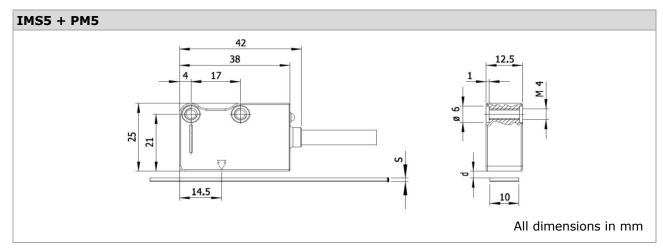
Pin diagram connector M12 plug, 8-pin, A-coded, view plug side, connected to an extension cable (e.g. 0,3 m, 5 m, or 30 m).

Signal	PIN	Conductor colour
Io	1	white
10	2	brown
В	3	green
B	4	yellow
Ā	5	pink
A	6	grey
0V	7	blue
+V	8	red
SCH		Shield

Pin diagram connector M12 socket, 8-pin, A-coded, view socket side, connected to an extension cable (e.g. 0,3 m, 5 m, or 30 m).



Signal	PIN	Conductor colour
Io	1	white
10	2	brown
В	3	green
B	4	yellow
Ā	5	pink
A	6	grey
0V	7	blue
+V	8	red
SCH		Shield

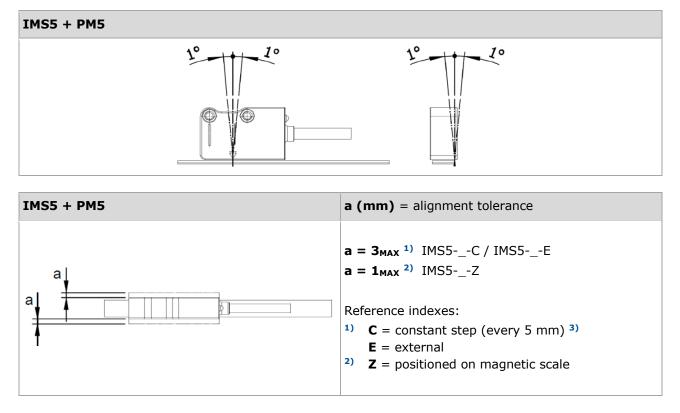

Datasheet

Messtechnik

Output signals

Dimensions

Value in mm	PM5	PM5 + DB01	PM5 + PS1
S	1.3	1.6	2.1
d IMS5	0.3 3.7	< 3.7	< 3.2
d IMS5/Z	0.35 2.0	< 1.7	< 1.2


s = thickness magnetic scale

d = distance to be observed between the sensor and the surface of the magnetic scale (or eventual cover tape/ support)

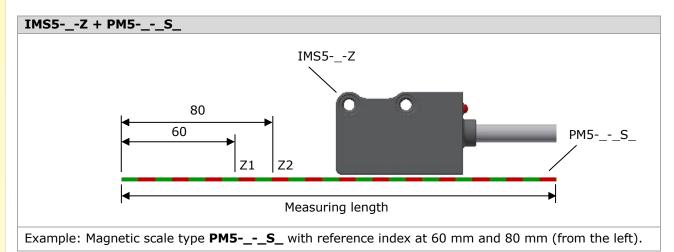
Datasheet

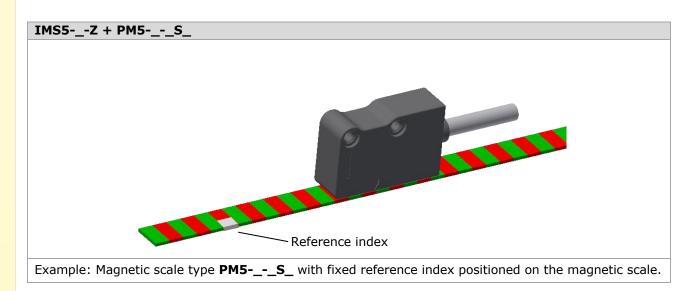
Alignment tolerances

³⁾ With 100 μ m resolution, the constant step is 10 mm.

NOTICE

- Avoid the direct contact with magnetized objects or tools that could damage the surface.
- Do not touch the contacts of the cable's connector to avoid electrostatic discharges (ESD) on the device.

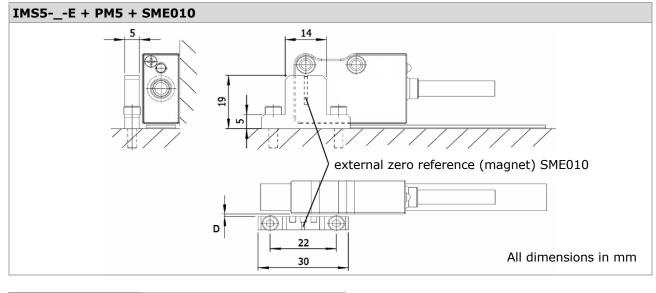

Datasheet



Reference indexes

+

To determine the positions of the reference indexes, the magnetic sensor and the magnetic scale must be aligned according to the following figure.


Manual setting of a reference point on the magnetic scale

On customer request, a specific reference index can be integrated at any position on the magnetic scale type **PM5-_-S_** by selectively demagnetising the magnetic track. Information on this can be found in the data sheet and the operating instructions for the magnetic scale.

Datasheet

External reference index

Value in mm	D				
IMS5E + PM5	1_{TYP}	< 2			

D = distance to be observed between magnetic sensor and **external zero reference**.

Datasheet

Sensors Mechanics Accessory

Ordering example

Resolution [μ m] 250 / 100 / 50 / 25 / 10 / 5 / 1 Reference index C = constant step (every 5 mm) ¹) = external Z = positioned on magnetic scale Power supply 528V = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC with 5 V output Dutput signals L = Line Driver Y = Push-Pull Cable ²) ³ M01/N = 1 m M02/N = 2 m	Туре	IMS5	- 10	- 0	- 1	528V	-	L	-	M02/N	- 1	S
5 = 5+5 mm Resolution [µm] 250 / 100 / 50 / 25 / 10 / 5 / 1 Reference index C = constant step (every 5 mm) ¹) = = external Z = positioned on magnetic scale Power supply 528V = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC with 5 V output Dutput signals L = Line Driver Y = Push-Pull Cable ²) ³ M01/N = 1 m M02/N = 2 m M03/N = 3 m	Pole pitch											
250 / 100 / 50 / 25 / 10 / 5 / 1 Reference index C = constant step (every 5 mm) ¹) = external Z = positioned on magnetic scale Power supply 528V = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC with 5 V output 5285 = 5 VDC 28 VDC with 5 V output Dutput signals L = Line Driver Y = Push-Pull Cable ²) ³ M01/N = 1 m M02/N = 2 m M03/N = 3 m												
Reference index C = constant step (every 5 mm) ¹) = external Z = positioned on magnetic scale Power supply 528V = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC with 5 V output Dutput signals L = Line Driver Y = Push-Pull Cable ²) 3 M01/N = 1 m M02/N = 2 m M03/N = 3 m	Resolution [µm]											
C = constant step (every 5 mm) ¹) = external Z = positioned on magnetic scale Power supply 528V = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC with 5 V output Dutput signals L = Line Driver Y = Push-Pull Cable ²) ³ M01/N = 1 m M02/N = 2 m M03/N = 3 m	250 / 100 / 50 / 25 / 10 / 5 / 1											
 = external z = positioned on magnetic scale Power supply 528V = 5 VDC 28 VDC 5285 = 5 VDC 28 VDC with 5 V output Dutput signals L = Line Driver Y = Push-Pull Cable ^{2) 3)} M01/N = 1 m M02/N = 2 m M03/N = 3 m 	Reference index											
Power supply $528V = 5 \text{ VDC} \dots 28 \text{ VDC}$ $5285 = 5 \text{ VDC} \dots 28 \text{ VDC}$ with 5 V output Dutput signals L = Line Driver Y = Push-Pull Cable 2) 3) M01/N = 1 m M02/N = 2 m M03/N = 3 m		1)										
528V = 5 VDC 28 VDC $5285 = 5 VDC 28 VDC with 5 V output$ $Dutput signals$ $L = Line Driver$ $Y = Push-Pull$ $Cable 2) 3)$ $M01/N = 1 m$ $M02/N = 2 m$ $M03/N = 3 m$	Z = positioned on magnetic scale	!										
$5285 = 5 \text{ VDC} \dots 28 \text{ VDC} \text{ with } 5 \text{ V} \text{ output}$ $Dutput signals$ $L = Line Driver$ $Y = Push-Pull$ $Cable ^{2) 3)$ $M01/N = 1 \text{ m}$ $M02/N = 2 \text{ m}$ $M03/N = 3 \text{ m}$	Power supply											
Output signals L = Line Driver Y = Push-PullCable 2) 3)M01/N = 1 mM02/N = 2 mM03/N = 3 m	528V = 5 VDC 28 VDC											
L = Line Driver $Y = Push-Pull$ $Cable 2) 3) M01/N = 1 m M02/N = 2 m M03/N = 3 m$	5285 = 5 VDC 28 VDC with 5 V ou	tput										
f' = Push-Pull Cable ^{2) 3)} $M01/N = 1 m$ $M02/N = 2 m$ $M03/N = 3 m$	Output signals											
Cable ^{2) 3)} M01/N = 1 m M02/N = 2 m M03/N = 3 m	L = Line Driver											
M01/N = 1 m M02/N = 2 m M03/N = 3 m	Y = Push-Pull											
M02/N = 2 m M03/N = 3 m	Cable ²⁾³⁾											
M03/N = 3 m	M01/N = 1 m											
	M02/N= 2 m											
Connection	M03/N = 3 m											
	Connection											

SC = without connector, open cable end

Cxx = progressive (e.g. C08 = connector M12 plug, 8-pin)

1) With 100 µm resolution, the constant step is 10 mm.

Cable

2) Different cable lengths are available. The sensor is provided with a 2 m cable as standard. Longer lengths are available with the following application limits: $L_{max} = 10 \text{ m sensor cable}$

 $L_{max} = 100 \text{ m}$ sensor cable (2 m) + cable extension

- Cable extensions need to have a 0.5 mm² section for power supply conductors.
- ³⁾ For applications where the maximum speed exceeds 1 m/s, it is necessary to use a PUR cable suitable for continuous movements.

н

Accessories

Please order the magnetic scale, the corresponding cover tape, the external zero reference (magnet) and the extension cable separately. For ordering information, please refer to the corresponding data sheet.

You can configure the enclosure according to your requirements from the technical information and enter it into the ordering code. Variants that cannot be configured from the ordering example are available on request as a special version.

Without prior notice, the products may be subject to modifications that the Manufacturer reserves to introduce as deemed necessary for their improvement. Mistakes excepted.

Willtec Messtechnik GmbH & Co. KG, Eschenweg 4, 79232 March-Hugstetten, Phone: 07665/93465-0 Fax: 07665/93465-22 info@willtec.de www.willtec.de

Control