

- Winkelgetriebe mit Kegel- und Spiralkegelrad sind für die Übertragung von Drehbewegungen zwischen zwei rechtwinklig zueinander stehenden Wellen geeignet.
- Ausführungen mit Spiralkegelräder sind in allen Versionen erhältlich; bogenförmige Verzahnungen erreichen eine höhere Präzision, sind geräuschärmer im Betrieb und ermöglichen eine 30% höhere Effizienz.
- Alle Winkelgetriebe sind kugelgelagert; minimales Winkel- und Axialspiel.

Technische Eigenschaften

Abmessung	gesamt, siehe Abschnitt: Ausführungen mit Abmessungen			
Durchmesser				
Vollwelle	Ø 10 mm (Standard), 14 mm (optional); auf Anfrage			
Hohlwelle	Ø 10 mm (Standard), 12 und 14 mm (optional);			
Länge Hohlwelle	auf Anfrage in Version A, B, C			
Vollwelle	16 mm <u>Nutzlänge</u> , 20 mm <u>Bautiefe</u> (Standard)			
	25 mm (Standard); mit NUT (bei Standard) oder optional			
Material Habburgla Vallualla	Edolotahi (AICI 202)			
Hohlwelle, Vollwelle Gehäuse	Edelstahl (AISI 303) Druckgussgehäuse Aluminium, farblos eloxiert (Standard),			
Genause	schwarz eloxiert oder Edelstahl (AISI 303) (optional)			
Lagerung	Kugellager, gehärtete Kegelräder			
Gewicht	300 g 2 Ausgänge			
	400 g 3 Ausgänge			
Version				
A	mit 2 Ausgangswellen			
В	mit 3 Ausgangswellen			
C	mit 3 Ausgangswellen (gegenläufig)			
D	mit 3 Ausgangswellen, 2 Hohlwellen (durchgehend)			
Überseteringericht ihr inne 1)	mit 4 Ausgangswellen			
Übersetzungsverhältnisse 1)	1:1 1 (Standard) 1:2 2 ins Langsame (Standard)			
	2:1 0,5 ins Schnelle (auf Anfrage in Version A, B, C,			
	nicht erhältlich in Version D), siehe Abb. 5, 6			
Drehmoment	12 Nm			
Achsbelastung	Radiallast 25 kg			
	Axiallast 2,5 kg (siehe Abb. 7)			
Getriebe				
Kegelräder	Gerade Verzahnung (Standard), siehe Abb. 1			
Spiralkegelräder	Bogenförmige Verzahnung, siehe Abb. 2			
Spiel- Toleranz zwischen Zahnrädern	0,1° bis 0,75°			
1) (1)	nd 2:1 sind nur mit Spiralvorzahnung lieferhar			

Übersetzungsverhältnisse von 1:2 und 2:1 sind nur mit Spiralverzahnung lieferbar.

Für eine korrekte Auswahl der Winkelgetriebe, siehe die nachfolgenden Tabellen der technischen Eigenschaften, Leistungsdiagramme, sowie die entsprechenden Ausführungen mit Abmessungen der Winkelgetriebe.

Anzeigen

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22

www.willtec.de • Email: info@willtec.de

66-5 DB 2025-04-23 DE

Umdrehungssinn				
Version A	Version B	Version C	Version D	Version E

Die Drehrichtung hängt von der Konfiguration und der Positionierung ab; siehe Ausführungen mit Abmessungen.

Getriebe			
Abb. 1	Abb. 2	Spiralkegelrad	
Kegelrad	Spiralkegelrad	mit 2 Wellen	mit 3 Wellen

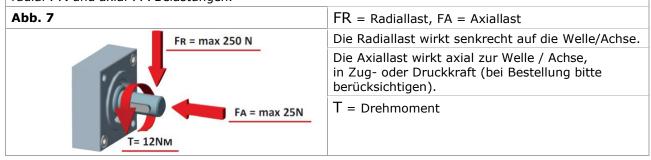
Spiralkegelräder (Abb. 2) mit bogenförmiger Verzahnung, erreichen eine höhere Präzision, sind geräuschärmer im Betrieb und ermöglichen eine 30% höhere Effizienz. Übersetzungsverhältnisse von 1:2 und 2:1 sind nur mit Spiralverzahnung lieferbar.

Übersetzung und Übersetzung			
Abb. 3	Abb. 4	Abb. 5	Abb. 6
e coracio con de la companya de la c	Series orario - coordinate de la constanta de	Befestigungsbohrungen n2	Befestigungsbohrungen n2 n1
im Uhrzeigersinn	im Uhrzeigersinn	Beis	piele
<u>Übersetzungsverhältnisse</u> i = n1 : n2 bei i > 1 ins Langsame bei i < 1 ins Schnelle		1:2 ins Langsame n1 = 1.000 1/min n2 = 500 1/min i = 2	* 2:1 ins Schnelle n1 = 1.000 1/min n2 = 2.000 1/min i = 0,5 * (nicht erhältlich in Version D)

Für die Angabe der Übersetzung (Abb. 5 und 6) und der Bauform, ist die Antriebswelle n1 (die immer auf der gegenüberliegende Seite der Befestigungsbohrungen abgebildet ist) maßgebend, die anderen folgen im Uhrzeigersinn (Abb. 3 und 4).

Für den Einsatz im Dauerbetrieb verwenden Sie bitte das Modell 66/5UC.

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY


Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22

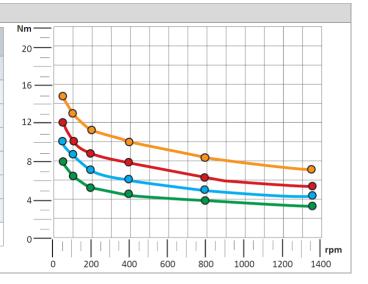
www.willtec.de • Email: info@willtec.de Mechanik Zubehör Sensorik Messen **Anzeigen** Prüfen

Achsbelastung

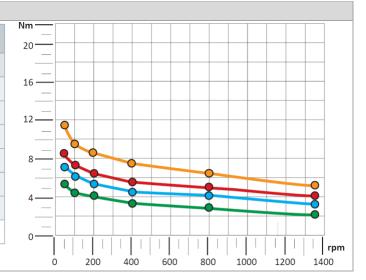
Die Belastungen auf das Getriebe sind im Gesamten und in Abhängigkeit des Aufbaus zu betrachten, wie Versatz, Vibrationen, Beschleunigung oder Verlangsamung, Stöße, Vibration, etc. Dabei sind zwei Arten von Wellenbelastungen zu berücksichtigen: radial FR und axial FA Belastungen.

Messen

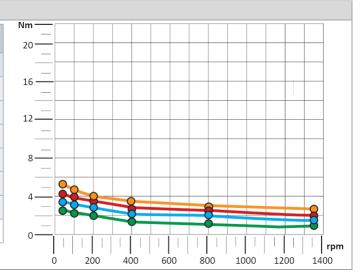
Anzeigen


Prüfen

Leistungsdiagramme und Tabellen


Drehmoment mit Übersetzung 1 (1:1)

	OUTPUT TORQUE WITH RATIO 1/1 DREHMOMENT MIT ÜBERSETZUNG 1/1			
● TM dc	TR dc	O TM dsp	TR dsp	rpm
12	8	15,6	10,4	50
10,2	6,8	13,2	8,8	100
9	5,8	11,7	7,5	200
8	4,9	10,4	6,3	400
6,8	41	8,8	5,3	800
5,5	3,5	7,1	4,5	1400
			Efficiency - Le	eistung = 90%


Drehmoment mit Übersetzung 2 (1:2)

OUTPUT TORQUE WITH RATIO 1/2 DREHMOMENT MIT ÜBERSETZUNG 1/2				
● TM dc	■ TR dc	O TM dsp	TR dsp	rpm
8,9	5,5	11,6	7,2	50
7,5	4,7	9,7	6,1	100
6,7	4,1	8,7	5,3	200
5,9	3,7	7,7	4,8	400
5	3,1	6,5	4	800
4,1	2,5	5,3	3,2	1400
			Efficiency - Le	eistung = 90%

Drehmoment mit Übersetzung 0,5 (2:1)

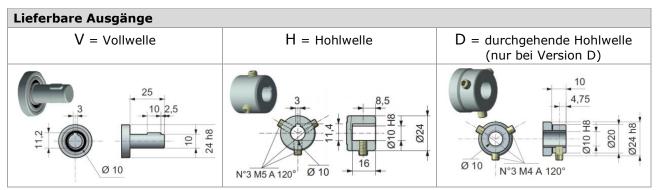
	OUTPUT TORQUE WITH RATIO 2/1 DREHMOMENT MIT ÜBERSETZUNG 2/1			
■ TM dc	● TR dc	O Тм dsp	● TR dsp	rpm
4	2,7	5,2	3,5	50
3,4	2,3	4,4	3	100
3	2	3,9	2,6	200
2,6	1,8	3,4	2,3	400
2,2	1,5	2,8	2	800
1,8	1,2	2,4	1,6	1400
			Efficiency - Le	eistung = 90%

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22 www.willtec.de • Email: info@willtec.de

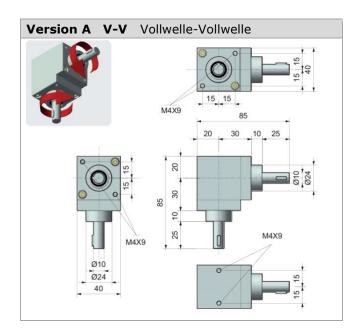
Messtechnik

Datenblatt

Class	Glossar		
	· -		
FR	Radialkraft		
FA	Axialkraft		
R	Kraft		
Т	Drehmoment		
Тм	Maximales Drehmoment		
TR	Empfohlenes Drehmoment		
TA	Tatsächliches Drehmoment		
To	Ausgangsdrehmoment		
T _I	Eingangsdrehmoment		
Pn	Power		
N	Newton		
Nm	Newton Meter		
fu	Einsatzfaktor		
i	Übersetzung		
rpm	Umdrehungen pro Minute (1/min)		
n1	Eingangswelle		
n2	Ausgangswelle		
dc	Kegelradgetriebe-Verzahnung		
dsp	Spiralverzahnung		
М	Vollwelle		
F	Hohlwelle		
D	Durchgehende Hohlwelle		

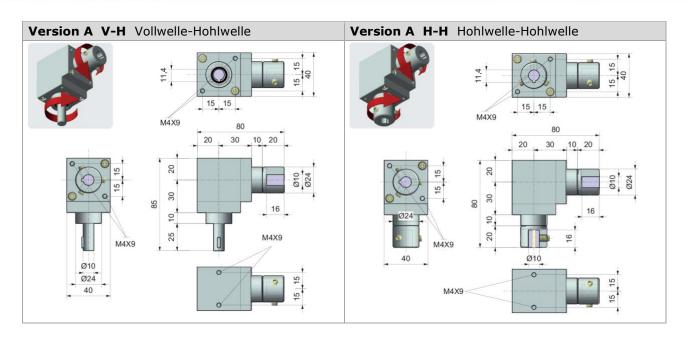

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22 www.willtec.de • Email: info@willtec.de

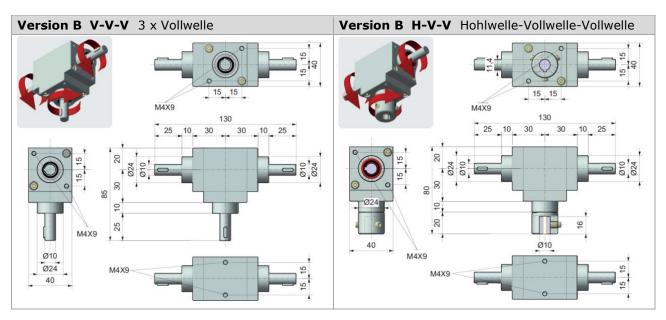
Messen


Anzeigen

Prüfen

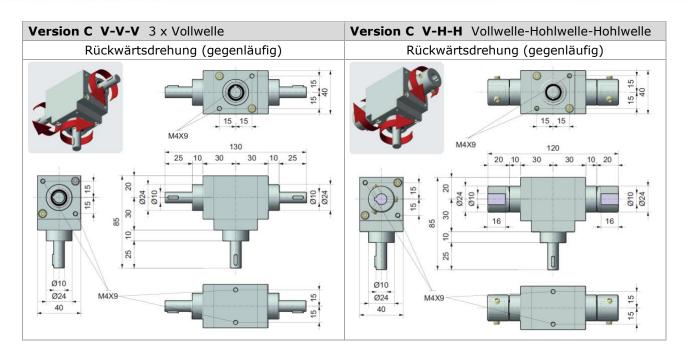
Ausführungen mit Abmessungen

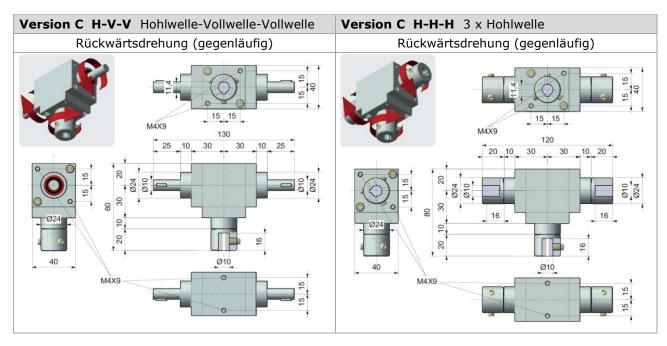

Alle Abmaße in mm



Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22 www.willtec.de • Email: info@willtec.de

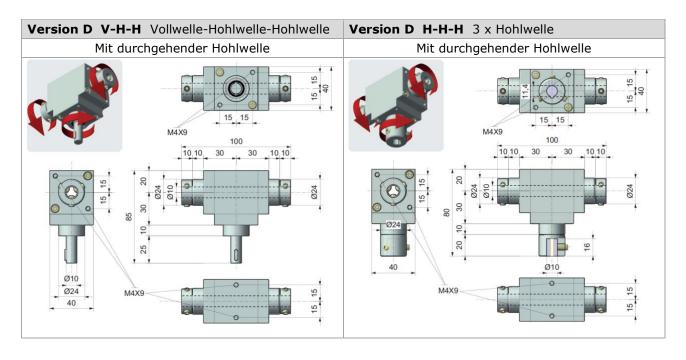
Prüfen

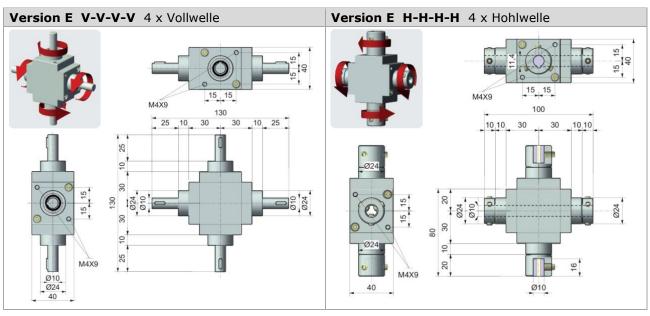



Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22 www.willtec.de • Email: info@willtec.de

Prüfen

Anzeigen




Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22

Messen

www.willtec.de • Email: info@willtec.de

Anzeigen

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22 www.willtec.de • Email: info@willtec.de

Anwendungen

Die Winkelgetriebe sind industrietauglich und universell einsetzbar, für Spindelantriebe in beliebigen Einbaulagen.

- Kompakt und modulare Bauformen, anpassungsfähig, einfache Montage. Das günstige Preis-Leistungsverhältnis und geringer Bauraum ermöglicht eine günstige Systemlösung.
- Manuelle oder motorisierte Verstellungen mit passendem Flansch, Adapter, flexibler Wellen und Kupplungen oder Motor, optional mit Positionsanzeigen und Klemmelementen, vervollständigen eine sinnvolle Baugruppe im Maschinen und Anlagenbau.

Winkelgetriebe mit starrer Welle

Übertragen der Drehbewegung, direkte Verbindung über starre Welle.

Übertragen der Drehbewegung über eine oder mehrere flexible Wellen, wo eine direkte Verbindung sonst nicht möglich ist; beispielsweise zur Verbindung von zwei nicht perfekt ausgerichteten Achsen oder Wellen.

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22

Messen

www.willtec.de • Email: info@willtec.de

Abbildungen zeigen Winkelgetriebe mit flexibler oder starrer Welle, Lagerbock mit Flansch, Klemmeinheit und Positionsanzeige.

Einsatzgebiete

Verpackungs-, Lebensmittel-, Pharma-, Kunststoff-, Holz-, Blech-, Glas-, Wickel-, Bau-Straßenmaschinen, ebenfalls an traditionellen Maschinen und Spezialanwendungen im Metallbau, Hebetechnik, Fördertechnik, Lineartechnik, Sonderanlagenbau, etc.

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22 www.willtec.de • Email: info@willtec.de

Messen Anzeigen Prüfen Sensorik

Bestellbeispiel

Typ 66/5 - - A - 1 - V10-H10

Getriebe 1)

- = Kegelräder (Standard), keine Angaben

SP = Spiralkegelräder (optional)

Material Gehäuse

= farblos eloxiert (Standard), keine Angaben

ES = schwarz eloxiert (optional) VA = Edelstahl (AISI 303) (optional)

Version

A = mit 2 Ausgangswellen

B = mit 3 Ausgangswellen

C = mit 3 Ausgangswellen (gegenläufig)

D = mit 3 Ausgangswellen, 2 Hohlwellen (durchgehend)

E = mit 4 Ausgangswellen

Übersetzungsverhältnis 1)

 $\mathbf{1}$ = 1:1 (Standard)

2 = 1:2 ins Langsame (Standard)

0,5 = 2:1 ins Schnelle (auf Anfrage in Version A, B, C,

nicht erhältlich in Version D)

Ausführung Welle

V = Vollwelle; mit NUT (bei Standard)

H = Hohlwelle mit Sackloch; durchgehende Hohlwelle nur bei Version D

Durchmesser Welle 2)

10 = \emptyset 10 mm (Standard);

= Ø 12 und 14 mm (optional); auf Anfrage in Version A, B, C

Länge Welle 2)

Vollwelle: 25 mm (Standard)

Hohlwelle: 16 mm Nutzlänge, 20 mm Bautiefe (Standard);

- 1) Übersetzungsverhältnisse von 1:2 und 2:1 sind nur mit Spiralverzahnung lieferbar.
- 2) Weitere Längen und Durchmesser sind auf Anfrage erhältlich.

Hersteller:

Der Hersteller behält sich das Recht vor, ohne vorherige Ankündigung Änderungen an den Produkten vorzunehmen, die er für deren Verbesserung für erforderlich hält.

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • GERMANY Fon: +49 (0) 7665/93465-0 • Fax: +49 (0) 7665/93465-22

www.willtec.de • Email: info@willtec.de