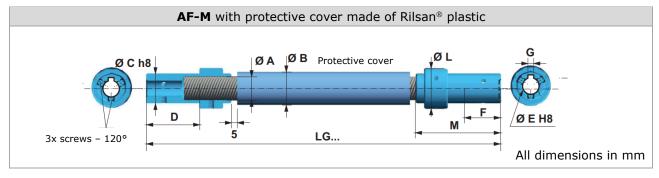


Precise power transmission of non-aligned elements

Features at a glance

ň


Flexible shafts type **AF-M** provide an economical and practical solution to transfer the rotary movement between two non-aligned elements. Excellent compensation of misalignments and damping of vibrations and shocks.

- Universal applicability, high reliability, maintenance-free and easy-of-use.
- Smooth-running and silent operation.
- Suitable for manual and motorised drives.
- Simple and quick installation, without the need for other supports.
- Terminal couplings made of solid stainless steel (AISI 303).
- Protective cover made of Rilsan[®] plastic for lengths above 400 mm.

The low cost and easy installation allow a variety of applications: packaging machines, machine tools with numerical control, automation technology, robots, lifting adjustments, etc.

Available terminal couplings: **CL** = cylindrical shaft; **CF** = cylindrical hollow shaft; **CM** = cylindrical solid shaft with key; **CMB** = cylindrical solid shaft with two-piece bushings with screws for easy assembly.

Dimensions and efficiency table

Version	Flexible shaft	Protective cover	Terminal	Effective length	Inner coupling	Bore depth	Key
	ØA	ØB	ØC	D	ØE	F	G
AF6M	6	12	12	30	6	20	-
AF8M	8	14	15	30	8	20	-
AF12M	12	20	17	37	10	26	3
AF15M	15	22	20	37	10	26	3
AF20M	20	35	25	45	14	32	5

Willtec Messtechnik GmbH & Co. KG • Eschenweg 4 • 79232 March-Hugstetten • Germany Phone: 07665/93465-0 • Fax: 07665/93465-22 • Email: info@willtec.de • Internet: www.willtec.de AF-M DB 2022-08-24 EN

Efficiency table (Continued)

Version	Terminal cover	Terminal	Torsion	Binding radius*	Torque	Weight
	ØL	M	(°)	mm	Nm	g
AF6M	15	45	80	70	3	800
AF8M	20	45	70	90	4.5	1100
AF12M	26	56	50	160	9	1600
AF15M	28	56	28	300	12	2100
AF20M	34	72	18	400	18.5	3300

The data refer to flexible shafts with a total length of 1000 mm. * Minimal bending radius. Protective cover made of Rilsan[®] plastic; recommended against oil, grease, dirt, corrosive agents, etc. for lengths above 400 mm.

Ordering example

Туре	AF12M	-	200	-	DX	-	CL-CM	-	RILSAN
AF06M = flexible shaft \emptyset 6 mm									
AF08M = flexible shaft \emptyset 8 mm									
AF12M = flexible shaft Ø12 mm									
AF15M = flexible shaft \emptyset 15 mm									
AF20M = flexible shaft \emptyset 20 mm									
Total length (mm)									
In xxx mm (on request)									
Rotation									
DX = for operation in clockwise (right	-hand) directio	n							
SX = for operation in counter-clockwi	se (left-hand)	dired	tion						
Terminal couplings (indication per shaft	end)								
CL = cylindrical shaft	,								
CF = cylindrical hollow shaft									
CM = cylindrical solid shaft with key									
CMB = cylindrical solid shaft with two-p	piece bushings								
Q = cylindrical square shaft	5								
- , ,									
Protective cover									

RILSAN

+

= Protective cover made of Rilsan[®] plastic for lengths above 400 mm.

Other versions that cannot be generated from the order code are available on request as special versions.

Datasheet

Q	CL	CF	СМ	СМВ	$\mathbf{Q} = cylindrical square shaft$					
	1	9.	4	A	AØ	B				
		Legend					Į T			
ØA	Diameter o	of flexible s	haft		ØA	В	С			
ØВ	Diameter c	of square sl	naft		6	5	30			
С	Total lengt	h			8	6.5	35			
D	Available le	ength / bor	e depth		10	8 - 8.5	40			
E	E Key			12	10	40				
ØF	Ø F Diameter hollow-/solid shaft				15	12 - 13	45			
ØG	Ø G Outer diameter bushing				20	16.5 - 17.5	45			

Terminal couplings for TR, ASR, GR made of solid stainless steel (AISI 303), available versions

CL = cylindrical solid shaft					CF = cylindrical hollow shaft						
ØA ØA C wialable - nutzbar					ØA	ØB		ØFH8			
ØA	ØB	С	D	ØA	ØB	С	D	E	ØF		
6	10	28	12	6	10	28	10	-	6		
8	12	38	16	8	12	38	15	-	8		
10	14	44	20	10	14	44	15	-	8		
12	16	48	22	12	16	48	16	3	10		
15	20	50	25	15	20	50	16	3	10		
20	25	57	30	20	25	57	20	5	14		

CM = cylindrical solid shaft with key					СМВ	= cylind	lrical so	lid shaft	, two-p	iece bus	shings	
							ØA -		Ø G	ØF H8		
ØA	ØB	С	D	E	ØF	ØA	ØB	С	D	E	ØF	ØG
6	10	28	10	-	6	6	10	10	39	-	6	14
8	12	38	14	-	8	8	12	12	53	-	8	22
10	14	44	14	-	8	10	14	14	59	-	8	22
12	16	48	15	3	10	12	16	16	64	3	10	24
15	20	50	15	3	10	15	20	20	66	3	10	24
15	20	50	15	5	14*	15	20	20	76	5	14 *	32 *
20	25	57	20	5	14	20	25	25	78	5	14	32

* optional

All dimensions in mm

Hillitec Messtechnik

Mechanical characteristics

Flexible shafts are mechanical elements subjected to torque and elastic deformation. When considering a single flexible shaft, the equal and opposite torques acting on both sides cause a relative rotation of the different sections that is proportional to the length.

The relationship between applied torque **T** [**Nm**] and twist angle of the extremities φ [°] is obtained as a function of the following three parameters:

- Torsional rigidity k [103Nm / °],
- which depends on the section diameter and the construction characteristics
- - length of the shaft **L [mm]**
- - Rotation direction **r**,
- dimensionless parameter characterising the asymmetrical behaviour of the shaft

$\varphi = \frac{T}{rK} \cdot L$	$T = \frac{rk}{L} \cdot \boldsymbol{\varphi}$
----------------------------------	---

The parameter **r** is equal to **1** when the shaft is loaded according to the winding direction of the spiral. When loaded in the opposite direction, $\mathbf{r} < \mathbf{1}$, as indicated in the following table:

Flexible shaft parameters									
Ø	k[10 ³ Nm/°]	Φ[°]*							
4	17	0.55	1.1	46.71					
5	26	0.55	1.8	69.23					
6	38	0.55	3.0	78.95					
8	67	0.55	4.5	67.16					
10	101	0.55	7.5	74.26					
12	180	0.65	9.0	50.00					
15	405	0.80	12.5	30.86					
20	1050	0.85	18.5	17.62					

* The data refer to a length of $T_{max} = 1000$ mm.

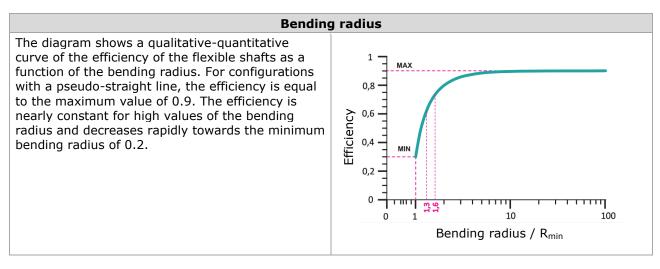
i

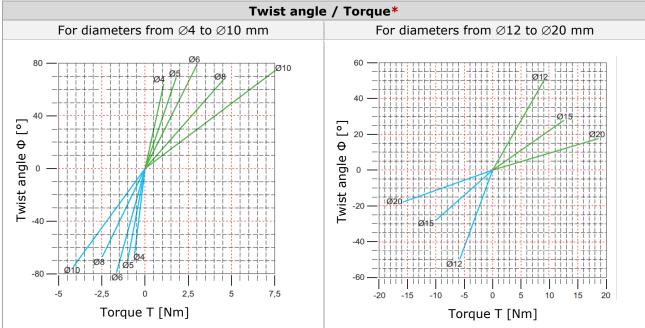
Direction of rotation and winding

Flexible shafts differ both in their construction and in their direction of winding A left-wound shaft (related to its outermost layer) can transmit a higher torque in clockwise direction than in counter-clockwise direction. A right-wound shaft can transmit a higher torque in counter-clockwise direction than in clockwise direction.

Outermost layer **left-wound**, for **operation in clockwise** (right-hand) **direction**. Outermost layer **right-wound**, for **operation in counter-clockwise** (left-hand) **direction**.

+

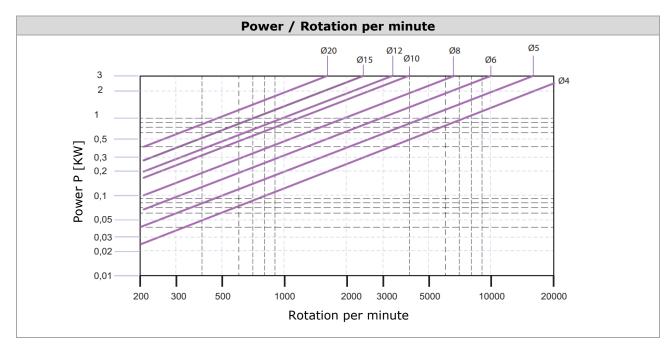



Efficiency diagrams and tables

To identify the flexible shaft most suitable for your requirements, refer to the values in the tables.

If the actual loads and efficiency cannot be clearly determined, please contact our technical department.

All tables show linear dimensions in [mm] unless otherwise specified. All forces, efficiency and loads are given in [N] or [Nm] (10 N = 1 kg or 10 N·m = 1 kg·m) unless otherwise specified.



* The data refer to flexible shafts with a total length of 1000 mm.

Flexible shafts **AF-M**

Datasheet

The manufacturer reserves the right to make changes to the products that it deems necessary for their improvement without prior notice.